Biomedical Image Volumes Denoising via the Wavelet Transform
نویسندگان
چکیده
Image denoising represents a crucial initial step in biomedical image processing and analysis. Denoising belongs to the family of image enhancement methods (Bovik, 2009) which comprise also blur reduction, resolution enhancement, artefacts suppression, and edge enhancement. The motivation for enhancing the biomedical image quality is twofold. First, improving the visual quality may yield more accurate medical diagnostics, and second, analytical methods, such as segmentation and content recognition, require image preprocessing on the input. Gradually, noise reduction methods developed in other research fields find their usage in biomedical applications. However, biomedical images, such as images obtained from computed tomography (CT) scanners, are quite specific. Modelling noise based on the first principles of image acquisition and transmission is a too complex task (Borsdorf et al., 2009), and moreover, the noise component characteristics depend on the measurement conditions (Bovik, 2009). Additionally, noise reduction must be carried out with extreme care to avoid suppression of the important image content. For this reason, the results of biomedical image denoising should be consulted with medical experts.
منابع مشابه
Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملA New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
متن کاملRetinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.
ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012